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This paper describes results of a dynamic density (DD) human-in-the-loop simulation and DD model 
development activity that was designed to examine the complexity measures.  DD measures that were presented 
at the US/Europe ATM 2003 Seminar were used in the analysis.  This study differed from the previous one in 
three aspects: first, the simulation included Reduced Vertical Separation Minima procedures, second, the study 
focused on the Cleveland Air Route Traffic Control Center’s airspace where previous study results showed the 
weakest correlation, and third, the traffic was actively controlled during the simulation, whereas in the previous 
study, audio/video replays were shown.  The results indicated that the DD metric performed better than aircraft 
count, which is the basis of the presently used complexity gauge, and that the new DD model performed better 
than the previous model for Cleveland Center. 

Introduction 
A number of factors affect air traffic 

controller workload.  These factors include, but are 
not limited to, potential conflicts, number of hand-
offs, heading and speed differences, aircraft 
proximity to each other and sector boundary, 
presence of weather, and number of aircraft [1, 2]. 
In the US, the current air traffic management 
system uses the monitor alert parameter, a threshold 
based on aircraft count, to measure sector level 
capacity and air traffic controller workload. It is 
widely recognized, however, that aircraft count, and 
hence the monitor alert parameter, has significant 
shortcomings in its ability to accurately measure 
and predict sector level complexity [3, 4].   

The controller workload is a subjective 
attribute and is an effect of air traffic complexity. 
Both the US and Europe aviation communities have 
been very interested in developing quantifiable 
metric(s) for air traffic complexity, also known as 
dynamic density (DD). The term complexity, or 
dynamic density (DD), is defined as the collective 
effect of all factors, or variables, that contribute to 
sector level air traffic control complexity or 
difficulty at any given time [5].  This study reports 
the results of a human-in-the-loop simulation 
exercise, contributing to the on-going complexity 
measures development and validation research.   

The Need for Dynamic Density 
One of the core elements of future concepts 

such as dynamic airspace configuration and 
advanced traffic flow management is the ability to 
measure and predict complexity.  In an operational 
setting, changes in traffic flows and airspace will be 
better managed, both strategically and tactically, if 
an accurate measurement and prediction of 

complexity for a particular airspace is available.  
Additionally, higher levels of automation are 
proposed for future operations.  Should automation 
degrade and if the design calls for a human operator 
to manage the situations, the measures of 
complexity are crucial so that human workload 
limitations are not exceeded. 

Complexity measures could be used to 
determine the areas where airspace design changes 
may be necessary.  Airspace can be redesigned and 
examined to ensure that the complexity of the 
redesigned airspace is same or lower than its 
previous level.  

Often when researchers create scenarios for 
concept or procedural examinations, they need 
multiple scenarios of similar complexity but not the 
same scenarios to avoid learning effects.  The 
complexity measures could be used as a yardstick 
to compare multiple scenarios.  

From the research perspective, the use of a 
DD metric in fast-time simulation models would 
provide a dynamic indicator of sector capacity and 
possibly workload.   Most current fast-time models 
use the Monitor Alert Parameter (MAP) as a sector 
capacity indicator [6].  A problem with using the 
MAP values is that they are usually generated by 
the facility that controls the sector and are not based 
on objective measures [7].  Although these values 
can be adjusted dynamically, there is no scientific 
basis for doing so.  A more objective measure 
would be a DD metric based on the current traffic 
situation and not on a static MAP value.  This 
would provide a better way to represent potential 
workload and the ability to dynamically reroute 
aircraft around saturated airspace. 

A number of researchers have studied the 
topic of air traffic control complexity measurement 
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(Mogford et al., 1995 [2]; Laudeman et al., 1999 
[8]; Sridhar et al., 2000 [9]; Chatterji & Sridhar, 
2001 [3]; Masolonis, 2003 [10]; Flynn et al., 2006 
[11]; Manning & Pfleiderer, 2006 [12]).  These 
earlier efforts largely concentrated on identifying 
the quantifiable complexity variables, based on the 
factors that contribute controller workload, using 
simulation exercises and controller feedback.  Their 
main findings included a battery of complexity 
measures.  However, they were not validated using 
field data.  Therefore, the largest field data 
collection and validation exercise for complexity 
measurement and prediction was conducted 1999-
2002 by the authors.  Researchers collected over 
6400 complexity ratings from controllers and 
supervisors at four US en route facilities.  The 
study included the review of 72 thirty-minute traffic 
samples from a total of 36 high and low sectors.  
The study included most of the previously 
identified complexity variables and some additional 
variables identified by the authors.  Researchers 
conducted an extensive metric development and 
validation activity with this set of data, which was 
presented at the 5th USA/Europe ATM 2003 
Research and Development (R&D) Seminar [4].  
They found that the combination of multiple 
complexity variables developed by various 
researchers worked the best in representing the 
controller workload.  

Motivation for Current Study 
The motivation for the current study was 

threefold. First, the previous data collection and 
validation effort, that was reported at the 5th 
USA/Europe ATM2003 R&D Seminar, was 
performed prior to the implementation of Reduced 
Vertical Separation Minima (RVSM).  Some argue 
that RVSM procedures may impact the complexity 
of operations as more altitudes are available for 
conflict resolution and for setting up traffic flows.  
Hence, it was thought that some complexity factors 
might change.  Therefore, the incorporation of 
RVSM procedures into a DD study seemed 
necessary.  Second, the DD metric performed 
differently at different Air Route Traffic Control 
Centers (ARTCCs) in the previous study.  It 
performed the least well for Cleveland Center’s 
airspace of the four facilities in the sample.  
Therefore a specific focus on Cleveland airspace 
was warranted.  And third, in the previous study, 
controllers and supervisors observed playbacks of 
traffic scenarios and provided complexity ratings.  
The researchers recognized the limitations of this 
approach and had always planned for another study 
where controllers would actively control traffic in a 
real-time simulation environment.  In essence, this 
study could be considered a further validation of 
the initial study reported in ATM 2003 Seminar. 

Description of DD Metrics 
In 1999, the FAA William J. Hughes 

Technical Center (WJHTC), NASA Ames Research 
Center, and Metron Aviation formed a partnership 
to research DD.  Each organization had its own 
ideas about what variables contributed to DD, 
although many similarities existed.  The analysis 
therefore considered all of the proposed variables.  
A unified DD model (i.e., one containing variables 
from each organization) performed the best. 

For the present study, NASA and the FAA 
collaborated once again to evaluate the same 
candidate DD variables that were considered in the 
previous analysis.  This time, however, they used 
data collected from en route air traffic controllers 
working live traffic in a simulated environment to 
establish a more accurate and representative DD 
model. 

A high level description of the proposed 
variables is provided in the following sections.  For 
detailed formulas, computations, and descriptions 
of all the metrics, please refer to a review article by 
Kopardekar [13]. 

WJHTC Metric 
Table 1 lists the WJHTC DD variables.  More 

detailed metric descriptions, rationales, and 
formulas are provided in Kopardekar [4]. 

AD1 Aircraft density 1 - number of aircraft 
divided by occupied volume of airspace 

AD2 Aircraft density 2 - number of aircraft 
divided by sector volume 

CRI Convergence recognition index – 
measure of the difficulty of detecting 
converging aircraft with shallow angles 

SCI Separation criticality index - proximity 
of conflicting aircraft with respect to 
their separation minima 

DOFI Degrees of freedom index – based on 
maneuver options in a conflict situation 

CTI1 Coordination taskload index 1 - based on 
aircraft distance from the sector 
boundary prior to hand-off 

CTI2 Coordination taskload index 2 - different 
formula based on the same principle as 
CTI1 

SV Sector volume 

AC Aircraft count 

Table 1.  WJHTC DD Variables 
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NASA Metric 1 
The NASA-1 metric consisted of 16 variables, 

which are listed in Table 2.  For details of the 
calculations, readers should refer to Chatterji [3]. 

C1 Number of aircraft 

C2 Number of climbing aircraft 

C3 Number of cruising aircraft 

C4 Number of descending aircraft 

C5 Horizontal proximity metric 1 

C6 Vertical proximity metric 1 

C7 Horizontal proximity measure 2 

C8 Vertical proximity measure 2 

C9 Horizontal proximity measure 3 

C10 Vertical proximity measure 3 

C11 Time-to-go to conflict measure 1 

C12 Time-to-go to conflict measure 2 

C13 Time-to-go to conflict measure 3 

C14 Variance of speed 

C15 Ratio of standard deviation of speed to 
average speed 

C16 Conflict resolution difficulty based on 
crossing angle 

Table 2.  NASA Metric 1 Variables 

NASA Metric 2 
The NASA-2 metric consisted of 8 variables, 

which are listed in Table 3.  Laudeman et al. [8] 
and Sridhar et al. describe these variables in detail 
[9].   

N Traffic Density 

NH Number of aircraft with Heading Change greater 
than 15º 

NS Number of aircraft with Speed Change greater 
than 10 knots or 0.02 Mach 

NA Number of aircraft with Altitude Change greater 
than 750 feet 

S5 Number of aircraft with 3-D Euclidean distance 
between 0-5 nautical miles excluding violations 

S10 Number of aircraft with 3-D Euclidean distance 
between 5-10 nautical miles excluding violations 

S25 Number of aircraft with lateral distance between 
0-25 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

S40 Number of aircraft with lateral distance between 
25-40 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

S70 Number of aircraft with lateral distance between 
40-70 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

Table 3.  NASA Metric 2 Variables 

Metron Aviation Metric 
The Metron metric consisted of 10 variables, 

listed in Table 4.  For further details, refer to 
Wyndemere [14]. 

WACT Aircraft count within a sector 

WDEN  Aircraft count divided by the usable 
volume of sector airspace. 

WCLAP Number of aircraft with predicted 
separation less than a threshold 
value (e.g., 8 miles) at a particular 
time. 

WCONVANG  The angle of converge between 
aircraft in a conflict situation 

WCONFLICT 
NBRS  

Count of number of other aircraft in 
close proximity to a potential 
conflict situation (e.g., within 10 
miles laterally and 2000 feet 
vertically). 

WCONF 
BOUND  

Count of predicted conflicts within 
a threshold distance of a sector 
boundary (e.g., 10 miles). 

WALC  Count of number of altitude 
changes above a threshold value 
with the sector. 

WHEADVAR  Count of number of bearing 
changes above a threshold value 
with the sector. 

WBPROX  Count of number of aircraft within a 
threshold distance of a sector 
boundary (e.g., 10 miles). 

WASP  The squared difference between the 
heading of each aircraft in a sector 
and the direction of the major axis 
of the sector, weighted by the sector 
aspect ratio. 

Table 4.  Metron Aviation Variables 

Table 5 lists 9 additional variables that were 
used in the study.  These variables correspond to 
some of the original candidate metrics, but were 
computed differently.  The TGF at the WJHTC is in 
the process of documenting these calculations.  
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NUMHORIZ Number of aircraft with predicted 
horizontal separation under 8nm 

HDGVARI Variance of all aircraft headings in a 
sector 

AXISHDG Squared difference between heading 
of each aircraft in a sector and 
direction of major axis 

CONVCONF Average angle of convergence 
between aircraft in a conflict 
situation 

PROXCOUNT Number of aircraft in close 
proximity to a potential conflict 
situation 

CONFCOUNT Count of predicted conflicts within a 
threshold distance of a sector 
boundary 

ALTVAR Variance and mean of all aircraft 
altitudes in a sector 

NUMBNDY Number of aircraft within a 
threshold distance of a sector 
boundary 

ASPECT Major axis length divided by minor 
axis length of a sector 

Table 5.  Additional DD Metrics 

Method 
The metrics developed by the FAA WJHTC / 

Titan Systems, NASA Ames Research Center, and 
Metron Aviation were evaluated in this study.  This 
was the second validation exercise that examined 
all of the DD metrics using the same common data 
set to identify their applicability, strengths, and 
weaknesses.  

The DD research activities associated with the 
current study were performed in three steps.  The 
first step was a data collection effort.  It involved 
selecting traffic samples from actual facility 
operations, generating simulation scenarios, and 
collecting subjective ratings from controllers on the 
complexity of those traffic samples in a simulated 
air traffic control environment.   

The second step involved the programming of 
all the candidate DD variables into the Target 
Generation Facility (TGF) Data Reduction and 
Analysis Tool, located at the WJHTC, and the 
generation of DD output/values based on the 
simulation data. 

The third step focused on data analysis and 
development of an optimal DD metric.  This 
included a comparison of the DD output to the 

complexity ratings, and a regression analysis to 
determine the significant DD metric variables. 

Step 1 – Complexity Rating Data 
Collection 

Participants 
During the first step of the DD study, 

researchers collected System Analysis Recording 
(SAR) data from Cleveland ARTCC to generate the 
simulation scenarios.  This data source differed 
from the original study, which used the Enhanced 
Traffic Management System (ETMS) as the data 
source.   

For the human-in-the-loop simulation, six 
Certified Professional Controllers (CPCs) and 1 
Operations Supervisor from Cleveland ARTCC 
served as participants.  The CPCs had, on average, 
18 years experience controlling traffic at many 
facilities, and approximately 12 years experience 
controlling traffic at Cleveland ARTCC.  Fourteen 
simulation pilots and 4 ghost controllers also 
participated in the simulation. 

Scenarios 
The researchers gathered operational traffic 

data from 3 sectors in 3 areas at Cleveland ARTCC 
to develop traffic scenarios for the simulation data 
collection.  Table 6 details the sector 
characteristics, including whether the sector was 
high or low, and its Monitor Alert Parameter 
(MAP), or aircraft count threshold. 

Sector Name Area High/ 
Low 

MAP 
Value 

04 Mansfield 8 Low 20 

48 Ravenna 4 High 14 

66 Bellaire 6 High 14 

Table 6.  Simulated Cleveland ARTCC Sectors 

Four traffic scenarios, approximately 75-
minutes in length, were developed from the SAR 
data.  Additional traffic was added to the scenarios 
to ensure levels were 1) high enough to capture a 
range of complexity and 2) busy across sectors (i.e., 
not too concentrated in one sector over another).  A 
fifth scenario was also developed that contained 
off-nominal routing due to weather. 

Laboratory and Equipment 
The simulation was conducted in the high 

fidelity Display System Replacement (DSR) 
Laboratory at the WJHTC. Ten display positions, 
all equipped with the User Request Evaluation Tool 
(URET), version 23AC, were utilized during the 
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study (6 test positions, 4 ghost controller positions). 
The controllers used Voice Switch Communication 
System (VSCS).  The ghost controllers provided 
hand-offs to and from the surrounding sectors.  

Workload Assessment Keypads (WAKs) were 
installed at each test position as a means of 
recording complexity ratings during the simulation 
scenarios.  WAKs are electronic keypads 
containing numerical scales.  Participants are 
prompted to press a button corresponding to 
workload by buttons that illuminate and an aural 
tone that activates at specified intervals. 

Procedure 
Four traffic scenarios were each shown twice 

during the simulation.  The weather scenario was 
shown only once.  CPCs rotated between Radar & 
Data positions.  Controller teams were assigned to 
sectors in which they were familiar. 

The CPCs individually provided complexity 
ratings at 5-minute intervals for each simulation 
run, including one training run, via the WAKs.  
They rated complexity on a scale from 1 to 7 
(1=very low, 4=moderate, 7=very high).     

Step 2 – DD Metric Coding into DRAT 
Programmers from the TGF Group at the 

WJHTC coded the DD variables (provided in 
Tables 1-5) into the Data Reduction and Analysis 
Tool (DRAT), which is a JAVA based post-
processing simulation data analysis tool.  
Trajectories and sector geometries used in the 
human-in-the-loop (HITL) real-time simulation 
were input into the DRAT software.  The DRAT 
then calculated each DD variables at five minute 
intervals.  During the HITL real-time simulation, 
controller workload ratings were also collected 
every five minutes.   

Step 3 – Data Analysis & Model 
Development 

For the data analysis and model development 
portion of the DD study, the researchers performed 
regression analyses of the complexity rating data 
and DD output to establish weights and significance 
for the different DD variables.  The data set 
consisted of nine 75-minute runs, resulting in 693 
ratings.  Some runs resulted in one more rating than 
other runs depending on the exact time the run 
concluded.  All variables were considered 
collectively since results from the first study 
showed that a unified DD metric (i.e., variables 
across organizations) performed the best.  The 
results of the analysis are discussed in the following 
sections.  

Results 
DD Metrics Development 

The regression analysis results, reported as R2 
values, are shown in Table 7.  

 
Models 

Low 
Altitude 
Sectors 

High 
Altitude 
Sectors 

All 
Sectors 

DD 
model 0.64 0.74 0.69 

 
 

Current 
Study AC 

Count 
based 
model 

0.50 0.44 0.46 

Old DD 
model 0.40 0.37 0.32 

 
Study 

Reported 
in 2003 AC 

Count 
based 
Model 

0.10 0.05 0.13 

Table 7.  Regression Results (R2 values) for 
Cleveland ARTCC 

Note: R2 is a coefficient of determination and 
higher its value, the higher the variance in 
complexity ratings explained by the model.  The 
maximum value of R2 is 1.0. 

The results indicated the following: 

• Both new and old DD metrics 
represented complexity better than 
currently used aircraft count. 

• The new DD metric more accurately 
represented complexity ratings for 
Cleveland ARTCC than the DD metric 
from the previous study as represented by 
higher R2 values.  

• The aircraft count based model of the 
current study had higher R2 than the 
aircraft count based model in the previous 
study.  This could be because of 
differences in the data quality (i.e., SAR vs 
ETSM) and/or controllers were actively 
participating in the simulation rather than 
observers.  This implies that the quality of 
complexity measurement improves with 
higher accuracy of data. 

The regression equation output for the DD 
metric is presented in Table 8.  The table shows the 
significant variables and their corresponding 
weights (estimates), t-values, and p-values.  The 
chosen level of significance was 0.05. 

Initially, 52 variables were entered into a 
stepwise regression which eliminated insignificant 
variables (p > .05).  In addition, some predictors 
were excluded due to multicollinearity which 
occurs when high intercorrelations exist among the 
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Term Description Estimate Std Error t Ratio Prob>|t| 

Intercept  1.2035908 0.233088 5.16 <.0001 

AC Aircraft count 0.3157462 0.025022 12.62 <.0001 

AD1 Number of aircraft/occupied volume of airspace 14.131972 4.977504 2.84 0.0047 

SCI Proximity of conflicting aircraft with respect to 
their separation minima -0.007039 0.002824 -2.49 0.0129 

SV Sector volume -0.000267 4.18E-05 -6.39 <.0001 

C2 Number of climbing aircraft -0.517344 0.136599 -3.79 0.0002 

C9 Horizontal proximity measure 3 -2.575776 0.59082 -4.36 <.0001 

C11 Time-to-go to conflict measure 1 -1.550238 0.464715 -3.34 0.0009 

C15 Ratio of standard deviation of speed to average 
speed -1.901624 0.458784 -4.14 <.0001 

C16 Conflict resolution difficulty based on crossing 
angle 3.6584241 1.490403 2.45 0.0144 

S5 Number of aircraft with 3-D Euclidean distance 
between 0-5 nautical miles excluding violations -0.406443 0.115448 -3.52 0.0005 

S10 Number of aircraft with 3-D Euclidean distance 
between 5-10 nautical miles excluding violations -0.151261 0.060155 -2.51 0.0122 

WCONVANG The angle of converge between aircraft in a 
conflict situation 0.6512409 0.125299 5.2 <.0001 

WBPROX Count of number of aircraft within a threshold 
distance of a sector boundary -1.27544 0.561373 -2.27 0.0234 

WASP 

Squared difference between the heading of each 
aircraft in a sector and the direction of the major 
axis of the sector, weighted by the sector aspect 
ratio. 

0.0260912 0.002441 10.69 <.0001 

NUMHORIZ Number of aircraft with predicted horizontal 
separation under 8nm 0.44 63046 0.081356 5.49 <.0001 

HDGVARI Variance of all aircraft headings in a sector 0.0039505 0.001197 3.3 0.001 

AXISHDG Squared difference between heading of each 
aircraft in a sector and direction of major axis -3.01E-07 8.56E-08 -3.52 0.0005 

Table 8.  Regression Equation Output 
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variables [15].  These cases were indicated by high 
VIF values (VIF > 10), and corresponded to the 
following variables: C1, WCLAP, WDEN, and 
AD2.  Overall, 35 variables were excluded from the 
model.     

The resulting DD model consisted of 17 
variables and accounted for 69% of the variability 
in the data.  Measures of aircraft count and airspace 
structure were the most significant factors in the 
model (highest t-values). 

One of the motivators of this study was to 
identify the impact of RVSM on complexity since 
previous studies were conducted before RVSM was 
operational.  It appears that the RVSM may have 
impacted the variable termed AD1 (Number of 
Aircraft/Occupied by Volume of Airspace).  In the 
2003 study, this variable was not significant.  It is 
plausible that due to RVSM, the aircraft density 
was higher since higher altitude options are 
available in the same volume of airspace.  

DD Metrics Testing 

Results for Instantaneous DD Model 
A performance assessment was conducted 

using the complete set of data.  Figure 1 shows that 
the DD model followed the complexity ratings 
better than a model based only on aircraft count.  
Additionally, the R2 value was higher for the DD 
model than the aircraft count based model.  

Note: Aircraft Count Model: Rating = 
.5964075 + 0.3910888*Sector Count, R2 = 0.46; 
DD Model: Rating = DD equation, R2 = 0.69. 
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Figure 1.  Performance of DD Metric 

 

Table 9 shows the difference between the 
output of the DD model and the actual complexity 
ratings.  About 94% of the data points were within 
a 1 unit difference from the actual complexity 
ratings and about 50% of the data points matched 
the ratings exactly.  Less than 10% of the 
differences were greater than 2 units. 

Value Percent Cumulative 
Percent 

-4 0 0 

-3 0 0 

-2 1.88 1.88 

-1 25.97 27.42 

0 49.49 78.21 

1 18.61 95.81 

2 3.32 99.27 

3 0.29 99.56 

4 0.43 99.99 

Total 100  

Table 9.  Difference between DD and 
Complexity Ratings 

Figure 2 shows that the mean absolute 
difference (MAD) between complexity derived by 
the DD model and the actual complexity ratings 
was the lowest when the complexity ratings were 
closer to 2.  The MAD generally increased as the 
complexity ratings increased.  One possible 
explanation for this is that the data used to build the 
DD model contained a higher percentage of low 
complexity ratings and a much smaller percentage 
of high ratings.  
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Figure 2.  Mean Absolute Difference for 

Different Complexity Ratings 
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Comparison with European Complexity 
Factors 

Flynn et al. [11] indicated that controllers 
reported that a mix of climbing and descending 
aircraft, several traffic flows conversing at the same 
point, traffic bunching, a high number of aircraft, 
and multiple crossing points in the sector were 
critical complexity factors for Brussels and 
Hanover sectors.  Majumdar et al. [16] reported that 
the number of aircraft changing altitudes, speed 
differences, the number of aircraft, the number of 
surrounding sectors, and intersection points 
contribute to airspace capacity and complexity in 
Europe.   

Many complexity factors discovered in the 
current NASA/FAA study are similar to those that 
were found in the European studies. To the extent a 
comparison is possible, the European results appear 
to be consistent with current findings where sector 
count, fraction of climbing and descending aircraft, 
and proximity of conflicting aircraft with respect to 
their separation minima and horizontal proximity 
were identified as significant complexity factors. 

Overall Conclusions and 
Recommendations  

• The DD metric performed better than 
aircraft count, which is the basis of the 
presently used complexity gauge. 

• In comparison with the previous study, 
the results show an improved accuracy 
in the DD model.  This could be due to 
a better source of data (i.e., SAR vs. 
ETMS), additional significant 
complexity variables that were not 
used previously (e.g., HDGVARI, 
AXISHDG, NUMHORIZ), or the 
ratings based on controller’s direct 
interaction with the traffic rather than 
observation of replay.  

• The model can be further developed 
and tested with techniques such as 
neural networks, genetic algorithms, 
and non-linear regression.   

• Complexity changes with increased 
levels of automation and the prediction 
of complexity need to be explored. 
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